Outline

• Salym field and infrastructure overview
• Salym RTO/M (Real Time Operations and Monitoring) – Overview
• Management of change
• Resulting benefits
The Salym Smart Field project vision is that the Salym teams will have the information, workflows, tools and capabilities to continuously optimise the Salym fields – in the short term for production, and in the long term for lifecycle values.
......... the 1950’s...reading a wellhead pressure...we’re a lot smarter...and safer now!!
Location

Salym

West Salym

Vadelyp

Upper-Salym
Salym Field Overview

Field Overview
- 170,000 b/d, API 31, 30% water cut
- 500+ wells directionally drilled from 30 pads (1000 wells by 2015)
- 80% producers, 20% water injectors
- All well artificially lifted using ESP’s

ESP’s
- Remote/local ESP speed adjustment
- Surface choke – remote/local control
- Pressure/temp transmitters (THP, THT, BHP, BHT)
- ESP frequency, volts, amps, power, power factor, load, vibration, intake pressures
- Mikon Automatic echo transmitters - casing liquid level
Salym Field Overview Continued

- **Water Injection**
 - Surface choke – remote/local control
 - Real time flow, pressure, temperature transmitters (Q, THP, THT)

- **Surface Production**
 - Real time bulk oil, gas, water flow, levels, pressure transmitters
 - Remote/Automatic test separator
Smart Fields Foundation Mark I

Hydrocarbon Development Planning
Well and Reservoir Management
Surveillance

Integrated Production System Modelling (IPM + IFM suite)

Hydrocarbon Allocation (Energy Components/OIL)
Well Production Monitoring (Fieldware Production Universe)
Data Management

Application
- Well Production and injection Monitoring
- Well Test and Production Data Gathering
- Hydrocarbon Allocation
- Production System Optimisation
- Forecasting (short/medium term)
- Enabler for WRM, Surveillance, HDP

IT Architecture
- Historian
- PI
- DACA

ESP and Well Test Data Gathering (FieldWare WellTest/ESP)

Process Control Domain
Office Field
What is Smart Fields Foundation?

• What it isn’t….
 – Smart wells
 – A bunch of Software projects

• What it is…

Technology and Tools
Fieldware Production Universe:
 Well monitoring (RTM) & optimisation (RTO)
 Fieldware Well Test & Fieldware ESP
• Well test validation and transfer of data
 • ESP performance monitoring, optimisation and transfer of data

Energy Components:
 Hydrocarbon allocation and reporting
 IPSM / IFM
 Production system modelling
 “Dual” PI
 Greater uptime and data security
 DACA Security
 Secure link between OD & PCD, procedures

5 Business Processes
 Well Testing/data gathering
 Well Production Monitoring
 Hydrocarbon Allocation
 Production System Optimisation (PSO)
 Production Forecasting
 (Short/Medium)
Between the well bore and sales point we generate data from pressure sensors, temperature probes, flow instruments, position switches etc.

To successfully extract benefit from this information we need to capture it and use it.
Linking the Real Time (RTO/M) to the Right Time (WRM) Domain

Real Time
Production Ops. ‘Monitoring and Optimisation’

Right Time
Well and Reservoir Management (PE/Ops)
Smart Fields RTO/M – WRM the Fast Way

– Smart Fields Real Time Operations is based on the WRM value loop concept – we measure, model, decide and implement.

– The time domain in which RTO completes this cycle is in minutes/hours instead of days/months.

– Advances in IT and modelling mean the time domains get shorter. This improvement in technology provides opportunities for RTO applications.

– For example ESP frequencies change for optimisation in Salym Fields now take place on seconds/minutes basis instead of daily/weekly.
Salym Fieldware Production Universe - **FW PU** has been deployed on a total of 30 pads in West Salym, all Upper Salym and Vadelyp fields (100% of total producing wells). This enables real time operations and monitoring (RTO/M) on all producing wells (350+ wells). This is 100% of total Salym fields net oil production connected to SF RTM system.

Salym Fieldware Water Management - **FW EOR** is operational on all water source wells in West and Upper Salym fields (15 wells in total) and on all Salym fields well pads covering ~160 well injectors field wide (100%). The technology enables real time monitoring of surface vessels levels, surface pumps and wells injection pressures and rates. The technology enables real time monitoring of surface vessels levels, surface pumps and wells injection pressures and rates.

Salym Fieldware ESP - **FW ESP** - deployed on 350+ producing wells and water supply wells, enabling real time production/water supply operations, optimisation, surveillance with remote ESP frequencies changes, remote "stop/start" execution in a controlled manner. This is 100% of Salym wells equipped with ESP's (Producers and water supply wells)

Salym Fieldware Well Test - **FW WT** - deployed on 350+ producing wells (30 pads) enabling real time well test measurements screening, troubleshooting and automatic transfer of test data to the hydrocarbon accounting system.
FW_Automatic Notification

Well WS-K28-1416-07 High motor temperature since 15-Oct-2009 00:10:00

This is an automatically generated report from a Production Universe server (SLMCPF-S-6005). Please do not reply to this email.

Well WS-K02-1142-07 Low intake pressure since 14-Oct-2009 14:42:00

This is an automatically generated report from a Production Universe server (SLMCPF-S-6005). Please do not reply to this email.
FW ESP on 350+ Salym wells

Real time software application providing:

- Continuous ESP surveillance and control
- Describes well/pump assembly - casing/tubing dimensions, deviation, depth, mechanical/completion details, fluid properties, pressures, pump parameters, motor/motor controller details
- PU gives continuous pump flow rates for surveillance/optimization
- Rates may also be obtained from well testing - may be out-of-date and potentially misleading especially if well testing is infrequent
Salym ESP Pump Control using FW ESP

• ESP speed control by:
 – Closed-loop - continuously measuring liquid level above the pump - as level falls the pump is automatically slowed-down, when the level rises the pump is speeded-up, to maintain required NPSH
 – Real time remote ramp up/down of ESP wells.
 – Manually - adjusting pump speed based on analysis of pressure, IPR and pump performance curves

• Hence “sweet-spot” operation for increased production and maximum pump life
Salym ESP Performance Envelope monitoring using FW ESP

- The range of possible ESP operating points is constrained by a finite set of limits.
- The boundary defined by the overlay of all the limits is the operating envelope.
- To optimise production a further operating window can be defined within the operating envelope.
- This operating window is the desired sweet-spot for the ESP system.
FW ESP generated pump performance curve

- Displays catalogue, actual and predicted production vs pressure curves.
- Well production rates automatically derived from PU to continuously provide the operating point on the performance curve.
- Facilitates operation within the “sweet spot” for maximum pump run life and optimal production.
Injection Monitoring/Control via FW EOR

- Water Injection flows continuously measured, or estimated for all injection wells
- Traffic light display - “at a glance” injection system status, enables focus on problem wells and remedial actions to improve water injection performance
- Enables production/injection optimization within constraints, such as injection flow distribution, choke-size, pressure drops
Integrated Production System Modeling

- SPD running 90 day plan and forecasting and PSO using wells and surface models. IPSM supports continuous optimization of the entire system from reservoir to point-of-sale.
- The process of updating the model has been fully automated enabling engineers to focus on problem analysis rather than spending time finding data.
- Assessed by Shell IPSM GDT as The Best Example seen and used in Shell.
Salym ESP Liquid Level Above the Pump using Mikon Echometer

- Need to maintain sufficient fluid level above the ESP to prevent pump damage due to cavitation
- Mikon “Gun” sends an acoustic pulse into the well casing and a microphone “listens” for the reflected sound waves
- Gun/microphone housed in an explosion proof, Div 1, Class 1 enclosure
- Acoustic reflections converted to an electronic liquid level signal measured at frequencies up to once every 5 seconds.
- BHP calculation using DFL’s
Salym ESP Liquid Level Above the Pump using Mikon Echometer

- Depth measurements are telemetered via the SCADA/Historian systems such that liquid level above ESP’s can be monitored in the remote and local Salym offices.
- Salym have currently installed automatic echometers on 30 wells and are installing these on all ESP wells – field wide.
Management of Change

• It is one thing to install Smart Fields technology it is quite another to get it running, embedded and then sustained over the life cycle

• SPD are changing the work processes, roles/responsibilities and organization for most effective system utilization to permanently establish one standard, system-based way of working
 – User training - Total of 300+ staff
 – Super User Training - systems administration, configuration & maintenance
 – Mega user training – training the trainers
 – Development and deployment of Standard Operating Procedures for daily Smart Fields monitoring of water production, handling and injection performance, well testing, model maintenance,
 – Development and deployment of SOP’s for the use of Salym SmartFields systems and Technologies.
 – Implementation of SFFMk1 workflows across all disciplines involved in RTO/M
SPD Smart Fields Technology
RTO Fieldware Systems

Faster response time, min prod deferment, increase prod availability
Benefits – Improved HS&E

• Field visits to well pads have been reduced by the following optimization activities:
 – Well intervention by exception rather than routine
 – Remote ESP speed stop, start, adjustment
 – Remote adjustment of wellhead chokes
 – Reduced Well testing due to testing by exception
 – Automatic measurement of ESP casing fluid levels
 – All staff view the same information at the same time fostering reduced site visits, problem solving and optimization efforts

• Hence, Operators travel/work execution time associated with optimization has been reduced, allowing staff to control and operate an increased number of wells with minimum HSE exposure during field pad visits
Benefits – Improved HS&E

- The time savings have also allowed the existing operational staff to absorb the extra activities associated with running evolving newly drilled/completed wells.
- Hence the operators make fewer trips to the well pad, conduct fewer repetitive tasks, improve HSSE performance and make more time for themselves to carry out higher value work.
Benefits – improved well stability/Reservoir management

- Improvements are continuously being observed in well stabilization (FBHP) leading to increased production and better management of reservoir integrity.
Salym Smart Fields Technologies
Impact on ESP’s & Wells Trips

Reduction in monthly ESP trips from 45 to less than 10 resulting in:
• Higher availability (production/equipment)
• Increased ESP MTBF from 605 to 650 resulting in expected OPEX costs savings of USD 2.5 million in 2010

Reduction in production deferment from +/- 110 bbls/d to less than 10 bbls/d while enabling:
• Faster response time to ESP trips
• Increased production availability
• Faster response time to well ramp up
• Reduction of journeys to well locations
• Operator/well ratio from 1:20 – 1:30
Conclusions – benefits achieved so far

• Reduced ESP trips and increased production stability resulting in:
 – Higher availability (production/equipment)
 – Increased ESP MTBF from 605 to 650 days with projected OPEX costs savings of USD 2.5 million in 2010
 – Increased operator productivity and less journeys to well locations– operator/well ratio has improved from 1:20 to 1:30
 – Reduction in unscheduled deferments - .3%
• Water injection in compliance with requisite targets
• Increased engineer/analyst productivity due to automatic model updates
• Safer operations due to reduction in operator travel to remote wellheads
 – Reduced exposure to hazard,
 – Reduced environmental footprint, despite the increasing number of wells
• Less footprints in the Siberian snow!
Less Footprints in the Snow for Salym Field in Western Siberia

Thanks...